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Optical people tracking systems need a robust representation of each individual in order

to follow him or her over multiple non-overlapping cameras. Many researchers have done

this for sequences of conventional video frames, i.e. digital images. But what if the three-

dimensional location of each pixel is known in addition to its colour? What if the input

is a three-dimensional point cloud instead of a flat image? This extra information about

the location of each pixel introduces alternative representations based on both colour and

three-dimensional shape.

The study described in this thesis investigates several appearance models to make inter-

camera recognition of people possible. A novel circular hue-saturation histogram appears

to be amongst the most accurate and efficient models and a classic k-means in a hybrid

colour-geometry space yields the same results with only 11% of the data transfer.

Finally, excessive noise in the data prevents an adapted mixture of Gaussians model to be

successful within this study. Nevertheless, the predictions for future research concerning

this method are promising.
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Notation

While this thesis is intended to be mainly scientific, it will also serve as an implementation

documentation from which all algorithms should be reproducible. An overview of the used

notations and some implementation notes are provided to support future programmers.

All algorithms are implemented in Matlab R©, which uses mainly row vectors instead

of column vectors and starts its indices at 1 instead of 0. The report will follow this

convention. To avoid confusion, the notations used in this thesis are explained in table 1.

x a scalar. 0.1

~x a direction vector of size 1 ×m, where m is the number of
dimensions (around 3).

[0.1 0.2 0.3]

~xD the diagonal matrix of size m × m based on the vector ~x
where ~xD

ii = ~xi.

0.1 0 0
0 0.2 0
0 0 0.3



x a data vector of size n×1, where n is the number of elements
(around 103).

0.1
...

0.9



X a calculation matrix (e.g. a rotation/translation matrix).

0.1 0.4 0.7
0.2 0.5 0.8
0.3 0.6 0.9



X a data matrix of size n ×m, containing n direction vectors
of length m. The | ◦ | operator is defined as: |X| = n.

0.1 0.4 0.7
...

...
...

0.3 0.6 0.9


X an object. This can be a 3D matrix representing an image

or point cloud of h rows, w columns and m dimensions or a
more complex object.

Im Identity matrix with m rows and m columns.

1 0 0
0 1 0
0 0 1



Table 1: Notation of variables





Chapter 1

Introduction

With the ever growing population of our planet the needs for automated security increase

dramatically. The goal of this study is to find out if it is possible to follow people across

multiple stereo cameras at different locations. I will not propagandise the Big Brother

dystopia, as the English novelist George Orwell sketched in his book “1984”; on the con-

trary, the methods proposed in this thesis are designed to follow people without violating

anyone’s privacy. In contrast to controversial surveillance methods, the cameras in this

research do not output a single image. Only a small amount of data describing colour

features of a person will be used for inter-camera recognition.

Following or tracking people with a camera is a challenging computer task. Firstly it can be

hard to distinguish foreground (the person to track) from background (the environment).

Secondly by the effect of occlusion, a camera does not always have clear sight on a person.

Occlusion occurs when the line of sight from the camera to a person is blocked, either by

a person or by an object. To overcome these issues, Eagle Vision Systems (EVS)1 has

developed a system to detect and track people using stereo cameras.

A stereo camera typically has two lenses, each with its own image sensor . The lenses have

the same direction and are shifted a number of decimetres in the plane perpendicular to the

viewing axis. The camera records two images at once, a main image obtained by the first

sensor and an auxiliary image obtained by the second sensor. Using these two images, the

stereo camera can compute the distance of the camera to the pixels in the images. From

this distance it is possible to create a three-dimensional representation (i.e. a point cloud)

of the scene. The details of this process are out of the scope of this study, but to give an

impression, the result is illustrated in figure 1.1. The main image and the auxiliary image

1Eagle Vision Systems B.V. is a medium sized machine vision company in Naarden, employing around
15 people. They have experience in vision systems for over 15 years, mainly in the food, beverage &
packaging industry and in people logistics.

1



2 Chapter 1 Introduction

are shown in figure 1.1(a) and 1.1(b), and the result of combining these two images is a

point cloud, shown in figure 1.1(c).

(a) Main image acquired by
the stereo camera.

(b) Auxiliary image acquired
by the stereo camera.

(c) The point cloud con-
structed from both images.

(d) Main image after removing
distortion and applying colour
correction.

(e) The z-map. The ground
plane is white, darker pixels are
closer to the camera.

(f) The environment is filtered
using a background z-map and
one blob is detected as a person
using a threshold.

Figure 1.1: Detection of a person in a stereo image within the Eagle Eye (frame number:
EVS.5.2.94).

The cameras used in this study are attached to the ceiling and directed straight down.

One advantage of this situation is that occlusion rarely occurs from this bird’s-eye view.

Furthermore, from this direction the distance of pixels to the camera corresponds to their

height in the real world. The result of this is that there is a great difference between the

distance to people walking through the view of the camera and the distance to the the

background (the floor). This makes it relatively easy to detect people. This is illustrated

in figure 1.1(e) and 1.1(f). From the main image computed by the stereo camera in figure

1.1(d), a z-map can be constructed that colours pixels lighter or darker, depending on their

distance to the camera, as shown in figure 1.1(e). Then, the z-map is filtered in order to

detect blobs that indicate people in the image. The result is shown in figure 1.1(f). The

person visible in the image is clearly detected as a blob in the z-map.

A downside of this camera positioning is that the field of view , the part of the world

that the camera can see, is relatively small. Wide angle lenses are used to increase the

field of view, but even so the angle is limited because of the distortion correction that

is necessary for stereo vision. Furthermore, figure 1.1(d) shows that the effective field of

view is smaller than the visual field of view. An area of approximately 3 by 4 metres can

be seen at the floor level, but a person standing in this area will not always be entirely

visible. A full-length detection of a person is only possible in an area of approximately
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2 by 3 metres. That is why EVS uses multiple cameras with overlapping fields of view .

These cameras are connected to a global tracking engine, to track people in a larger area.

Depending on the height of the ceiling, around 15 to 30 cameras are needed to cover an

area of 100 square metres.

However, there is mostly no need to track a person constantly; frequently detecting and

recognising a person (e.g. by placing one camera on each intersection in an office building)

is sufficient for most applications. When the fields of view no longer overlap, tracking a

person across the view of multiple cameras becomes a completely different task. The global

tracking engine must create a representation of the tracked person in order to recognise

him or her at some later time when he or she reappears. The only data available for such

an appearance model is a coloured point cloud and the detected position of a person that

I illustrated in figure 1.2.

(a) The point cloud of the entire scene. (b) The extracted point cloud
of detected a person.

Figure 1.2: A cylinder containing a person is extracted from the scene. The colours
have been manually adjusted for visualisation purposes.

The two main purposes of this study will be firstly to investigate if it is possible to use

appearance models to track people across multiple non-overlapping stereo cameras and

secondly to find out which appearance models is most suitable, by designing, testing and

analysing a great number of methods. We will start by investigating appearance models

that describe a person by the colours of his or her clothes, skin and hair. Figure 1.3 shows

typical images recorded by the Eagle Eye, as EVS calls its people detection units with

built-in stereo cameras. These images indicate that it might be difficult to gather enough

colour information for a robust representation, because we might not see a lot of pixels

from the person’s clothes. However, we know the height of these pixels in the real world,

which provides us with a lot more data. The expectation is that the information in this

data can help us to build a robust representation of a person. For example we could group

pixels from the lower, middle and upper part of the person’s point cloud and use this as

an appearance model like Zajdel et al. did for flat images [1]. This is indeed one of the

appearance models implemented in this study, see section 4.3.



4 Chapter 1 Introduction

EVS.5.2.94 EVS.5.3.200 EVS.5.3.266 PSL.2.21.377 PSL.2.33.605 PSL.2.30.1573

Figure 1.3: A selection of 6 recorded frames, each containing a person.

In chapter 2 of this report EVS’s tracking system, the Eagle Grid , is explained and the

findings of previous research will be discussed. Chapter 3 will provide some background

information on colour spaces. Chapter 4 gives an extensively illustrated description of

the investigated appearance models, their advantages and disadvantages and the way they

were implemented for this study. How the appearance models are tested and compared

will be explained in chapter 5, and chapter 6 shows the conducted experiments and their

results. Finally, chapter 7 will give clarification about which appearance model to choose

under which circumstances and some additional ideas for future research.



Chapter 2

Background

This chapter will provide some background information on the system used in this study.

All models discussed in this thesis will be implemented in an existing tracking system.

This system, the Eagle Grid, will be explained in section 2.1.

In Section 2.2 some related work will be presented that forms the basis of this thesis.

2.1 The Eagle Grid

The domain of this study is limited to people tracking in an indoor environment, with

steady lighting, using ceiling-mounted stereo cameras. The people at Eagle Vision Systems

(EVS) are experts in this field and they have developed a system specifically designed to do

this. This study aims at improving that system and all experiments were conducted with

it in mind. Their system, the Eagle Grid, is a centralised multi-camera tracking platform

that serves as the foundation of numerous tracking algorithms with different applications

like securing areas, counting people and several other statistical analyses. It consists of

a number of stereo cameras, the Eagle Eyes and a tracking engine, the Eagle Tracking

Engine. Currently the Eagle Tracking Engine assumes that the fields of view of the Eagle

Eyes overlap. The goal of this study is to develop a method that can be used to extend

the framework to work with non-overlapping Eagle Eyes.

2.1.1 Eagle Eyes

I will now discuss the Eagle Eyes in more detail. They consist of two cameras and a

processing unit. The cameras are synchronised mono-CCD colour cameras. They capture

two images at once, which are combined by the processing unit in order to construct a

5



6 Chapter 2 Background

point cloud of the scene. In this construction the real-world location of each pixel in the

frame is estimated. Subsequently, a z-map of the scene is created. This z-map can be

represented as a monochrome image representing the z position of each pixel, i.e., the

height of the pixels with respect to the ground plane (for an example, see figure 1.1(e)).

Because pixels that belong to people are very high in comparison to pixels that belong

to the floor, people will be seen as blobs of high pixels in the z-map. The processing

detects people on the scene by searching for such blobs. Finally, after a captured frame is

processed, some information about each blob detected in that frame is sent to the tracking

engine. All in all, the Eagle Eyes are responsible for image capturing, stereo matching,

point cloud construction, people detection and data transmission.

Figure 2.1: Prototype of the latest Eagle Eye, June 2012.

While the Eagle Eye looks like a stereo camera (figure 2.1), it is more appropriate to

think of it as a human detection sensor . Indeed, the output of the Eagle Eye is not an

ordinary video stream but a sequence of feature vectors accompanied by a timestamp,

each representing a person detected on the scene. Currently the feature vector consists

only of the location and a bounding box of the person, but this vector should be extended

with information about a person’s appearance. In order to do this, one of the appearance

models proposed in this thesis should be applied to each detected person and the resulting

representation should be appended to the current feature vector.

2.1.2 Eagle Tracking Engine

Turning to the Eagle Tracking Engine, it receives representations of all detected people

within one frame from the Eagle Eyes. The tracking engine stores these representations

in a buffer. They are processed in batches with a small delay to overcome the effect of

network delays.

The tracking engine keeps a number of tracks. Each track represents a person in the real

world. When a person is detected by the Eagle Eye, it is either assigned to the existing
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track that matches it most closely, or a new track is created if no matching track exists.

The tracks contain the routes that the person has travelled. In this study these tracks

will be extended with a representation of the person. In this new method, all incoming

representations will be compared against the representation of the known tracks to find the

best match. Existing tracks are extended and their representations are updated. When a

person appears to be new, a new track is created. Its representation will be based on the

representation of that person.

2.1.3 Actuators

Figure 2.2: An example of an actuator. The GUI shows a person (green trace) has just
entered a restricted area (red polygon). Furthermore, 4 cameras are connected and 20

people have crossed the orange line.

The Eagle Tracking Engine follows people, but that is of no value if nothing happens with

the information. Each application developed by EVS needs an actuator to actually do

something, but the types of actuator can vary, depending on the purpose of the systems.

For instance: a counter that registers how many people cross a predefined line or and stores

this in a database1, an alarm that goes off whenever someone enters an area2, a graphical

user interface in which the track of every person is displayed for debugging purposes (figure

2.2 or a security system in which an Eagle Grid is used to detect the event of jumping

over a security gate3.

1At shopping mall Kanaleneiland, in Utrecht all incoming and outgoing customers are counted to gain
insight in the logistics.

2This is currently used at Heineken to secure a machine with dangerous moving parts. The machine
stops when someone comes too close.

3EVS is currently developing a jump-over-detector at the main office of an international bank in
Amsterdam
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2.2 Related work

In 2004, Zajdel et al. [1] described a multi-camera tracking system in which a colour

based appearance model was used. They used monocular cameras that were mounted in

such a way that they had a clear view of the person from head to toe. They manually

selected a frame from the video sequence and extracted the person as a sub-image. The

RGB colour pixels were converted to a colour channel normalised space [2] to suppress the

effects introduced by the colour of illuminating light. Subsequently they calculated the

mean colour of the lower, middle and upper body and used this as a representation.

In 2009, Englebienne et al. [3] adopted this method and applied it to a multi-camera

tracking system that used stereo cameras instead of monocular ones. They assumed steady

lighting and used the RGB values directly instead of converting them to a normalised space.

They computed three mean RGB colours of each detected person, aimed at representing

the colours of the lower, middle and upper part of the body. This is the reference that is

most closely related to my work, because they used the same sensors that are used in this

thesis. I build on their results by investigating six different colour/geometry spaces where

they only discussed the RGB colour space.

Over the years many colour spaces have been proposed. Some of them are very straightfor-

ward and have been used by many, others are complex, unintuitive and have only been used

in research settings. Gevers [4] describes 14 colour spaces of which four have been used in

this thesis, two have been combined into one and that combination has been extended to

form a novel colour/geometry space.



Chapter 3

Colour/geometry spaces

Whereas the human eye and brain are trained to observe the world as a collection of

objects, a computer unfortunately is not. Humans use all kinds of methods to detect

objects and determine their colour without even noticing they do it, but segmentation and

colour determination are particularly hard for a computer due to the influence of lighting

and shadows. When a surface contains only one colour, it may look like a whole band

of different colours in RGB space, due to differences in luminance [4]. To illustrate the

impact of the effect of illumination, a simple but powerful demonstration is provided in

figure 3.1. It shows that the human brain automatically compensates for the fact that

square B is covered by a shadow and therefore sees it as a lighter square. However, a

computer will only see the RGB values of both squares, and figure 3.1(b) shows that these

are equivalent.

(a) The squares marked A and B
seem to have a different colour be-
cause the human eye compensates
for the effects of shadow.

(b) Two grey bars are drawn to
show that both boxes are depicted
with the same shade of grey.

Figure 3.1: Edward H. Adelsons “Checkerboard Illusion” [5].

This study aims at developing appearance models to represent people. An appearance

model is considered to be a method to represent a person combined with a colour/geometry

space in which it will be represented. This chapter will handle the colour/geometry spaces

9



10 Chapter 3 Colour/geometry spaces

one by one, explaining for each colour/geometry space how it was constructed and how it

can be expected to behave.

3.1 RGB - Red, Green and Blue

Figure 3.2: RGB

Digital images are commonly recorded and stored as three chan-

nel image matrices. Each channel represents one of the three

primary colours red, green and blue. For every pixel in the im-

age, every channel has a value ranging from 0 to 1 depending on

the amount of that primary colour that is in the pixel. Together, these channels represent

the three-dimensional RGB space, see figure 3.2. In this colour space, a colour ~c is defined

as an RGB row vector [R G B] (e.g. ~c = [1.0 0.6 0.0] = wv) and the difference between two

colours ~p and ~q is defined as the Euclidean distance:

∆E(~p, ~q) =
√

(~q − ~p)(~q − ~p)> (3.1)

Figure 3.3 shows a picture of a person and the decomposition in the red, green and blue

channels. The channels are represented on a greyscale where a lighter shade of grey stands

for a greater amount of the corresponding colour. The distribution of the pixels projected

on the blue-red plane is shown in figure 3.3(e). It shows that the lighting has a great

influence on the RGB value: even though the jeans and sweater in the picture have only

one colour, they have a great number of different RGB values in different lighting. That

is why the RGB space causes problems in most colour models and the colour of an object

is not conveniently represented in this colour space. It is included in this study because it

is the original colour space in which the images are recorded. It is merely used as a base

line, but I do not expect good results of the RGB space.

(a) RGB (b) Red (c) Green (d) Blue (e) blue-red distribution (4000

samples)

Figure 3.3: RGB colour space
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3.2 rgb - Normalised Red, Green, Blue

Figure 3.4: rgb

To eliminate the effect of luminosity on the perceived colour,

the intensity can be removed from the RGB values to create a

chromaticity space in which only the colour tone is preserved

without the black or white factor. This chromaticity space is

denoted as rgb, in lower case. To convert a colour ~c from RGB to rgb, each channel is

divided by the intensity of the colour, which is defined as the sum of the red, green and

blue channels (equation 3.2 [4]).

~c :=


~c

cR+cG+cB
if cR + cG + cB > 0[

1
3

1
3

1
3

]
if cR + cG + cB = 0

(3.2)

Figure 3.5 shows the decomposition of the red, green and blue channels and the distribution

when the pixels are projected on the blue-red plane. Because all colours are divided

by the sum of the R, G and B values, the sum of the elements in the resulting rgb

colour ~c is always 1. This means that each channel can be calculated if the other two are

known (e.g. cb = 1 − cr − cg), thus one of the channels can be removed to reduce the

dimensionality. This is how this colour space is implemented in most applications and

therefore this implementation is also adopted in this study: the blue channel is removed.

As is shown in figure 3.4, the normalised rgb space is in fact an equilateral triangle (i.e.

triangle with equal sides), whereas projecting the entire space on the red-green plane results

in an isosceles right triangle (i.e. two sides are equal and one corner is 90◦). This means

that the space is skewed and that the colours are not correctly distributed. Therefore,

using a Euclidean distance in this space is incorrect. However, many researchers have

done so, and the Euclidean distance gives a simple estimate of a correct distance measure.

Therefore it will also be used here.

(a) rgb (b) red (c) green (d) blue (e) blue-red distribution (1000

samples)

Figure 3.5: Normalised rgb colour space
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3.3 HSV - Hue, Saturation and Value

Figure 3.6: HSV

The previous two sections showed that the RGB and rgb space

both have their shortcomings. Also, both spaces are not very

natural. A human would describe colours like ‘bright orange’

instead of ‘red with a bit of green’, and ‘greyish blue’ instead

of ‘some blue with a bit of red and green’. Because we are mimicking human behaviour

it might be better to use a colour space that approximates our own observations and

classifications.

A widely used colour space that does this, is the hue-saturation-value space, or HSV.

In this space the colour is defined by the hue, the amount of colour is represented by

the saturation and the brightness of the colour is represented by the value component.

The equations to calculate the hue, saturation and value are provided and discussed in

[4]. See figure 3.7 for the decomposition of the hue, saturation and value channels and

the distribution when the pixels are projected on the hue-saturation plane and on the

hue-value plane.

(a) hue (b) saturation (c) value (d) hue-saturation dis-

tribution (hue on the x-

axis)

(e) hue-value distribu-

tion (hue on the x-axis)

Figure 3.7: HSV colour space

As the hue dimension is circular, some issues arise around 0 and 1, i.e. the colour red.

When the red is a bit more purple, the hue is around 1; when it is more orange, the hue

is around 0. Another effect of this circularity can be seen in figure 3.7(d), there are much

more pixels in the saturated area than in the less saturated area. The next section will

elaborate a bit more on this circularity.

Like in the RGB space, an object with one colour only may look like a whole band of

different colours in HSV space. However, this band ranges from dark colours to light

colours. This means that they differ in the value dimension but not so much in the hue or
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saturation dimension, meaning that the noise occurs mainly in one dimension. This can

be seen in figure 3.7(e), where there are clear vertical clusters.

3.4 h - Hue

Figure 3.8: hue

The hue dimension of the HSV space is interesting because it

is a continuous colour dimension describing only what the pure

colour (i.e. without any white or black) of an object is. Because

I am building a colour based appearance model it might be sat-

isfying to use only these pure colours in my representation. Intuitively, this means that

the colour of an object is described to be blue or red or any other colour of the rainbow

without specifying how light, dark or greyish that colour is. Ranging the hue from 0 to 1,

the consecutive primary and secondary colours are: red, yellow, green, cyan, blue, magenta

and again red, see figure 3.8.

(a) Hue in

colours

(b) Hue in

greyscale

(c) Hue distribution (1000

samples, jitter: N (0, 0.1))

Figure 3.9: Hue colour space

As described in the previous section, and as can be seen in the hue value of the sweater

in figure 3.9(b), some problems arise due to the circularity of the hue space. There is a

turning point at 1, so problem occur especially when we are dealing with colours around

red. I will elaborate on this a bit more.

For example, what happens when we want to calculate the mean colour of a dataset of n

pixels in this circular hue space? The dataset consist of two colours (n = 2): c1 = 0.1 =wvand c2 = 0.8 = wv, respectively orange and purple. Calculating the mean as if the hue is
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a linear space would result in:

c =
1

n

n∑
i=1

ci (3.3)

0.45 = turquoise ( wv).
It is easy to see that turquoise can not be the mean colour of orange and purple ( wwwvvv).
Although the hue is a one-dimensional space and a colour is defined as a scalar 0 ≤ h < 1,

it can be converted to a unit vector ~c of two components a and b as follows:

~c = [a b] = [sin(2πh), cos(2πh)]. (3.4)

Now it is possible to calculate the mean of these vectors by simply dividing their sum by

their number. Then, I use the arctan2 function to calculate the hue of the resulting vector.

See appendix A for an explanation of the arctan2 function for vectors. For now, it can be

seen as a way to go back from unit vectors to the scalar representation of the hue. Using

this method, the mean colour of ~c1 and ~c2 can now be calculated as:

c = arctan2

(
1

n

n∑
i=1

~ci

)
(3.5)

≈ 0.95 = pinkish red ( wv).
And indeed this looks more likely to be the mean of purple and orange than turquoise did

( wwwvvv). This method is a good estimation when there are a lot of data points, but it is not

completely correct. For instance, the mean of a dataset C = {0.1, 0.1, 0.4} should be 0.2,

but with the method of equation 3.4 this becomes ≈ 0.1815.

As a solution, both methods are combined in this study. Firstly the mean hue is estimated

using equation 3.5. Then the opposite point on the hue circle is calculated as p = c +

0.5 modulo 1. The colours on the hue circle are now shifted such that the 0 to 1 transition

is exactly opposite to the estimated mean. A set of temporary colours C ′ is defined as

c′i = ci − p modulo 1. Now a temporary mean colour c′ is calculated using equation 3.3.

And finally the improved mean c∗ is calculated by shifting c′ back to the right position:

c∗ = c′ + p modulo 1.
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Let me apply this method to the previous example:

C = {0.1, 0.1, 0.4},
c ≈ 0.18, (eq. 3.5)

p = 0.68,

C ′ = {0.42, 0.42, 0.72},
c′ = 0.52, (eq. 3.3)

c∗ = 0.2.

Note that problems will still arise when the sum of the unit vectors results in [0 0]. However,

chances are small that this will happen in practical applications with many data points,

but if it does, the mean colour will be chosen to be c = 0 (pure red) by convention.

3.5 hs - Hue and Saturation

Figure 3.10: hs

Describing only the tone of a colour (i.e. its hue value) intro-

duces instability problems when the original colour approaches

grey. This is caused by the fact that similar shades of grey may

vary greatly in hue, as can be seen in the hair of the person in

figure 3.9(a). The same holds for white and black, as they are merely special cases of

grey. To overcome this effect I include the saturation in the colour space and construct a

hue-saturation space. Compare figure 3.10 to figure 3.8 to see the difference between both

colour spaces.

The visual colour effect of a change in the hue dimension varies greatly depending on the

saturation of a colour. For example hs(0, 0.1) and hs(0.33, 0.1) are grey with a hint of red

and green respectively ( wwvv), whereas hs(0, 1.0) and hs(0.33, 1.0) are bright red and bright

green ( wwvv). Using the Euclidean distance to measure the difference between two colours in

the Cartesian hue-saturation space would make no sense. In this example, the Euclidean

distance between the colours is 0.33 for both pairs, while the difference in colour between

the first two colours is much smaller than between the last two.

Therefore I will add the saturation to the hue colour space described in the previous section

to define a new two-dimensional colour space. For this purpose I convert every colour to

a vector ~c of two components a and b, based on the hue h and the saturation s, in a way

similar to the decomposition given in equation 3.4:

~c = [a b] = [s · sin(2πh), s · cos(2πh)], (3.6)
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This decomposition leads to the colour space depicted in figure 3.10. In this new Cartesian

space the distance between colours correspond to the difference between them. If the

concept of colour difference can be modelled, then this is probably the best way to do so.

Figure 3.11 shows the decomposition of an image into the two components corresponding

to the dimensions of the colour space. Figure 3.11(d) shows a plot of the data points in

the newly defined space. Not only are the four clusters of the jeans, the sweater, the face

and the hair clearly distinguishable, but their distribution also approximates a normal

distribution. This indicates that the colour space gives a good representation of the colour

differences. It is also very promising because in one of the methods I use, I will use a

mixture of Gaussians to find clusters of colours. And a mixture of Gaussians assumes

normally distributed clusters of data.

(a) hue & sat. (b) s · sin(2πh) (c) s · cos(2πh) (d) hue-saturation distribution

(2000 samples)

Figure 3.11: Hue-saturation colour space

3.6 hsz - Hue, Saturation and Height

Figure 3.12: hsz

So far, I completely ignored the fact that I am dealing with point

clouds instead of images. To understand why this information

could be useful we have to take a step ahead. The goal of this

study is to create a representation of a person in the real world

based on the distribution of colours over the pixels belonging to

this person (e.g. using a kernel method or a histogram). For such methods, it might be

useful to combine some of the geometric information the stereo cameras collect for each

pixel with the colour information collected from the image. Therefore the last space is

a hybrid Cartesian space containing both colour information and geometric information

in one space. This is bit tricky because two different domains are used in one coordinate

system, both with different measures and scales. In order to acquire a consistent unit of



Chapter 3 Colour/geometry spaces 17

measure, I will normalise the values in each dimension to range from -1 to 1. In the next

paragraph I will explain how I do this.

The two-dimensional colour component of this three-dimensional space is ~c as defined in

the previous section, equation 3.6. It is a vector ~c = [a b] which is a combination of hue and

saturation. The components of this vector are already between -1 and 1 by definition. The

geometric component z′ is a scalar that represents the normalised height of a data point.

The original height z of a data point is its distance to the ground plane, which is inversely

proportional to its distance to the camera. It is normalised by scaling with the minimum

and maximum height1, z⊥ and z> to form the normalised height z′ = 2 z−z⊥
z>−z⊥

− 1, with

range [−1, 1], just like a and b. Now I define a data point ~p as ~p = [~c z′] = [a b z′]. This

defines a cylindrical colour/geometry space in a Cartesian coordinate system where all

dimensions range from -1 to 1. This new space, incorporating both colour and height, is

shown in figure 3.12. Figure 3.13 shows that adding the height of the data points gives a

lot of extra information that is very useful when detecting clusters in the data.

(a) Hue (b) Hue & saturation (c) Hue, saturation & height

Figure 3.13: Hue, saturation and height colour/geometry space.

1The minimum and maximum height, z⊥ and z>, are predefined parameters, typically 0.2 metres and
2.2 metres, to remove noise from the ground plane and to make sure most people fit in.





Chapter 4

Appearance Models

In this chapter, I will discuss the appearance models that I use to represent a person in the

real world. It is essential for inter-camera tracking that these models are reliable. They

are used by the Eagle Tracking Engine to assign people detected at the scene to a number

of real-world individuals. As described in chapter 2, the input for these models is a point

cloud of the scene, together with the position of each person detected in the scene. A point

cloud corresponding to the detected person is obtained by extracting a cylinder from the

point cloud of the scene at the location of the detection. This cylinder is chosen to be

60 centimetres in diameter and 2 metres high. The output of the appearance models is

a representation of the detected person. This representation can then be matched to the

representations of the different tracks to see whether the detected person belongs to one of

these tracks. There are numerous methods to convert such a cylindrical point cloud to a

representation. Six of them are investigated in the remainder of this chapter. Each model

will be applied to all six colour spaces described in the previous chapter.

I start out with an appearance model based on histograms, which I will use as a base

line. All the other models are based on calculating mean colours. Some of them use fixed

partitions of the point cloud, while others try to automatically find cluster centres within

the distribution of the data points.

The investigated models are Histograms (M�), Single mean (M·), Disks (M©), Rings

(M}), k-Means (M∴) and Mixture of Gaussians (M�).

Finally the Mixture of Gaussians model will be extended in two different ways. These ex-

tended models are the Semi correlated mixture of Gaussians (M~) and the Semi correlated

mixture of Gaussians with separation planes (M	).

19
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4.1 Histograms

A colour histogram is a discretized representation of the colour distribution in an image

or point cloud. The axes of a colour space are divided such that the entire space is cut up

into equally sized pieces, the so called bins. The pixels are distributed over the histogram

and their colour determines in which bin they belong. Finally the number of pixels in each

bin is counted and those numbers form the representation.

Histograms are a relatively easy method to capture complex distributions. That is why

they are widely used in recognition tasks. A downside of using histograms is that the

feature vector of the resulting representation is relatively long compared to other methods.

As stated before, the histograms will serve as a baseline for the other appearance models. I

expect the newly designed models to perform at least as good, with smaller feature vectors.

For a Cartesian space like RGB and normalised rgb, the histogram is easily defined by

cutting up each dimension in b intervals, resulting in bm bins, where m is the number of

dimensions (see figure 4.1(a) and 4.1(b)).

(a) Conventional 3D RGB

histogram with b3 bins

(b) Conventional 2D rgb his-

togram with b2 bins

Figure 4.1: A conventional RGB and normalised rgb histogram. Note that almost half
of the bins of the normalised rgb histogram is unused.

Although this is not the right way to split up the normalised rgb space (recall section

3.2), in most literature it is done this way. I followed these researchers and created the

normalised rgb histograms like figure 4.1(b). I did however remove the completely empty

bins from the histogram, so the normalised rgb histograms in this paper contain b(b+1)/2

bins instead of b2. I present an alternative way to uniformly divide the normalised rgb

space in figure 4.2.
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(a) rgb plane in RGB space (b) rgb plane extracted (c) Improved 2D rgb his-

togram with b2 bins

Figure 4.2: The construction of a correctly distributed rgb histogram, using the simple
projection performed by neglecting 1 dimension (blue).

If the radial spaces would be divided in the same way as the Cartesian spaces are, this

results in bins that differ greatly in size and an unequal distribution of the colours. Refer

to figure 4.3(a) to see that the inner three bins contain almost the same tone of grey, while

the outer three bins each contain a whole range of colours (i.e. the ‘red’ bin contains all

colours from magenta, via red and orange to yellow). In other words, when the saturation

is 0, the hue has no effect, so the range of hue there should be 0 and when the saturation is

1, the hue has great effect and should range from 0 to 2π ≈ 6.28, because of its circularity

(recall figure 3.10). Thus, on average the hue should range from 0 to π ≈ 3.14 ≈ 3,

therefore we might want to divide the hue dimension in 3 × b bins instead of just b as in

figure 4.3(b).

(a) Conventional histogram

containing b2 bins

(b) Alternative histogram con-

taining 3× b2 bins

(c) Improved histogram contain-

ing 3× b2 equally sized bins

Figure 4.3: The first two images show how hue-saturation histograms are commonly
constructed, the last images shows the histogram constructed for this study.

The outer ring clearly shows that much more colours are covered by the histogram now,

but still the distribution is not optimal. Indeed, the bins in the centre contain even more

similar tones of grey. That is why an alternative method was developed in this study to
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make a proper hue-saturation histogram in which all bins are square-like and of equal size.

The first ring (i.e. the inner circle) is divided in 3 bins, the next in 9 bins, then 15 bins

and so on; every ring contains 6 bins more than the previous one. This results in 3b2

equally sized bins where b is the number of rings. I searched extensively for someone who

has used this type of histograms before, but I could not find a single resource. It is based

on the fact that the difference of squares is linear (i.e. b2 − (b− 1)2 = 2b− 1). The proof

that the bins are equally sized, is given in appendix B.

This radial histogram of figure 4.3(c) extends easily to the cylindrical and conical his-

tograms in figure 4.4(a) and 4.4(b). Refer to figure 3.6 to see that the variance in colours

decreases when the value decreases. Therefore the number of bins is lower in the darker

region of the HSV space.

(a) Cylindrical hsz histogram (b) Conical hsv histogram

Figure 4.4: Two extensions of the radial hue-saturation histogram.

To compare two histograms M� with k bins we need a distance measure. A histogram

can be represented as a vector with one element ωi for each bin, containing the number of

pixels ni in that bin divided by the total number of pixels n = |X| in a person’s cylindrical

point cloud X. Many people use the Euclidean distance to compare two such vectors,

however the Euclidean distance is proven to perform badly in high-dimensional spaces [6].

Therefore we simply use the total absolute difference ∆A:

M� = {ω1, . . . , ωk} (4.1)

ωi =
ni
n

(4.2)

∆�(M�
a ,M�

b ) = ∆A([ωa1 . . . ωak], [ωb1 . . . ωbk]) (4.3)

∆A(~p, ~q) =
k∑
i=1

‖pi − qi‖ (4.4)
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4.2 Single mean

This is the first and most simple appearance model based on averaging colours, M·. The

mean colour ~µ of all n pixels ~xi in a person’s point cloud X is calculated and the distance

between two models is defined by the Euclidean distance.

M· = {~µ} (4.5)

~µ =
1

n

n∑
i=1

~xi (4.6)

∆·(M·a,M·b) = ∆E(~µa, ~µb) (4.7)

∆E(~p, ~q) =

√√√√ m∑
i=1

(qi − pi)2 =
√

(~q − ~p)(~q − ~p)> (4.8)

4.3 Disks

Instead of calculating the overall mean colour, we can also calculate the mean colours of

different parts of the body. One heuristic is to divide the point clouds into three disks,

or layers [1] (figure 4.5(a)). Where Zajdel et al. used three layers, we will use a variable

number of disks, denoted by k. If the height of a person is ẑ = maxni=1 z, then the range

of a layer Yi is defined as
[

2i−1
2k+2 ẑ,

2i+1
2k+2 ẑ

)
, see figure 4.5(c).

The portion of pixels in a single disk Yi is denoted by ωi = |Yi|
|Y| , where |Y| is the total

number of pixels in all disks; this value is used as a weight when calculating distances.

Note that the number of pixels in the disks is smaller than the total number of pixels

in a person’s point cloud, |Y| < |X|. That is because, following Zajdel et al., the upper

and lower 1
2k part of the point cloud are not used for the model. Their reason was that

the lower part of the point cloud contains only a person’s shoes (and noise from the floor

in our case), while the upper part contains only pixels from the face and the hair of the

person. They were designing an appearance model that captures the colours of a person’s

clothes and therefore they excluded the upper and lower part.
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M© = {ω1, . . . , ωk, ~µ1, . . . , ~µk} (4.9)

∆©(M©a ,M
©
b ) =

k∑
i=1

ωaiωbi∑k
j=1 ωajωbj

∆E(~µai, ~µbi) (4.10)

ωi =
|Yi|∑k
j=1 |Yj |

(4.11)

(a) Image of the original idea by Zajdel
et al. used in [1] and [3]

(b) The extracted point cloud of
one person with separation planes.

(c) The representation. The
colour of the disks is the mean
colour µi of the pixels in that area,
the height denotes the number of
pixels |Yi|.

Figure 4.5: Interpretation of Zajdel et al. [1]. The colours of the point cloud have been
manually adjusted for visualisation purposes.

Notice that using the hsz space in this model is similar to using the hs space, because the

height of the pixels is embedded in both the appearance model and the hsz space. I did

however include the hsz space in the experiments with this model, and indeed it shows

similar results as the hs space.

4.4 Rings

I have extended this idea of the disks model to create a rings model, M}. Each disk is

divided into several rings of different radii. This implicitly brings more information about

a person’s shape into the model (see figure 4.6(b)). This extension makes it possible to

capture different colours at the edge of the virtual cylinder than in the centre, which allows

modelling concepts like bare arms or a shirt with an open jacket.
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A difference with the previous appearance model is that the height of the rings model

was fixed at z> = 2 metres and that the entire cylindrical point cloud was used. The

parameters are similar to those of the disks model, k denotes the total number of rings:

M} = {ω1, . . . , ωk, ~µ1, . . . , ~µk} (4.12)

∆}(M}
a ,M}

b ) =
k∑
i=1

ωaiωbi∑k
j=1 ωajωbj

∆E(~µai, ~µbi) (4.13)

ωi =
|Xi|
|X|

(4.14)

(a) Extension of the disks model that
includes separation by radius.

(b) The height of the rings implicitly
describe a person’s shape.

Figure 4.6: Extension of Zajdel et al. [1]. The colours of the point cloud have been
manually adjusted for visualisation purposes.

4.5 k-Means

Another way to calculate multiple mean colours is the classic k-means algorithm. Common

human appearances contain around four separate colours; the shirt, the trousers, the hair

and the skin, thus k ≈ 4.

k-means is a well known classic method and therefore I will describe it only briefly. Please

read Bishop [7] for more information. The k-means algorithm starts by randomly picking

k data points and uses these as cluster centres. Each data point is assigned to the nearest
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cluster centre, using the Euclidean distance ∆E (equation 4.8). k-Means basically divides

the data space into k partitions separated by hyper planes, the mid-planes between the

cluster centres (see figure 4.7(a)). After this assignment, or classification, the means of

the data points in each cluster are calculated and used as the new cluster centres. By

repeating this process k-means will converge. See algorithm 1 for the pseudo code.

(a) k-Means (b) Mixture of Gaussians

Figure 4.7: Separation of clusters using k-means and a mixture of Gaussians.

Algorithm 1 k-Means

Input: A pixel set X with n pixel vectors xi of length m.
Output: A matrix M containing k means ~µi.

1: . Initialisation
2: M ← randomSamples(X, k)
3: while M∴ is not converged do
4: . Expectation
5: for c = 1→ k do
6: Cc ← ∅
7: end for
8: for i ∈ {1, . . . , n} do
9: c← argminkj=1(~xi − ~µj)(~xi − ~µj)>

10: Cc ← Cc ∪ {xi}
11: end for
12: . Maximisation
13: for c = 1→ k do
14: ~µ← mean(Cc)
15: end for
16: end while
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The resulting parameters of the k-means modelM∴ look similar to those of the disks and

rings models:

M∴ = {ω1, . . . , ωk, ~µ1, . . . , ~µk} (4.15)

∆∴(M∴
a ,M∴

b ) =
k∑
i=1

ωaiωbi∑k
j=1 ωajωbj

∆E(~µai, ~µbi) (4.16)

ωi =
|Xi|
|X|

(4.17)

One issue with k-means is that the outcome of the algorithm can depend on the initiali-

sation. The initial centres are chosen by random sampling from the dataset for simplicity

reasons. Nevertheless there do exist better initialisation methods like k-means++ [8], see

algorithm 2 in Appendix C.

4.5.1 Remarks on the distance measure

The distance measure ∆∴ in equation 4.16 is a bit to simplistic; the means can be sorted

in any order, resulting in an unreliable and meaningless distance function. Therefore the

means of two models have to be aligned. One method to do this is by calculating the

distance of all permutations of clusters and choose the smallest. This is O(k!), however k

is the number of kernels and will be small, typically around 4.

4.6 Mixture of Gaussians

Whereas k-means assumes the separation planes to lie exactly in between the cluster

centres, figure 4.7 shows that this separation is not necessarily optimal. For instance, the

separation boundary between the green circles and the blue triangles is much closer to

the circles. Clusters of data points are not generally of equal size, nor do they have equal

variance in all directions. Therefore, it might be better to use a mixture of Gaussians to

model these clusters.

A mixture of Gaussians, M�, can be fitted on the data by applying an Expectation

Maximisation (EM) algorithm [7]. It is similar to k-means, with the extension that each

data point ~xj is assigned to each cluster centre ~µi with a certain probability pij = ωi ·
N (~µi,Σi, ~xj), see equation 4.18. instead of being assigned to one cluster centre only.

Therefore each cluster has an extra parameter additional to the mean ~µi; the covariance

matrix Σi. I would like to refer you to Bishop [7] for further details.
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N (~µ,Σ, ~x) =
1

(2π)m/2|Σ|1/2
exp

(
1

2
(~q − ~p)Σ−1(~q − ~p)>

)
(4.18)

The probability pij depends on the cluster’s prior and the distance from the data point

~xj to the cluster centre ~µi.

This distance is no longer the Euclidean distance, but the Mahalanobis [9] distance ∆M
Σ

(equation 4.19). Notice that the Euclidean distance ∆E is a special case of the Mahalanobis

distance, i.e. Σ = I.

∆M
Σ (~p, ~q) =

√
(~q − ~p)Σ−1(~q − ~p)> (4.19)

Calculating the distance between two Gaussian distributions is far from trivial. The

Kullback-Leibler divergence [10] is a non-symmetric measure that defines how much a

probability distribution P differs from another probability distribution Q (in that order).

Its general formula is shown in equation 4.23 the formula for two m-dimensional Gaussian

distributions is shown in equation 4.24.

M� = {ω1, . . . , ωk, ~µ1, . . . , ~µk,Σ1, . . . ,Σk} (4.20)

Σi =


σi,1,1 · · · σi,1,m

...
. . .

...

σi,m,1 · · · σi,m,m

 (4.21)

∆�
(
M�a ,M�b

)
=

k∑
i=1

ωaiωbi∑k
j=1 ωajωbj

∆KL
(
M�b ‖M

�
a

)
(4.22)

∆KL (P‖Q) =

∫ ∞
−∞

p(x) ln
p(x)

q(x)
dx (4.23)

∆KL (Nb‖Na) =
1

2

(
tr
(
Σ−1
a Σb

)
+ (~µb − ~µa) Σ−1

a (~µb − ~µa)> − ln

(
det Σb

det Σa

)
−m

)
(4.24)

tr(Σ) =

m∑
i=1

σii (4.25)
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Off all investigated appearance models, the mixture of Gaussians is expected to be the

best method to describe the colour distributions of the individuals, because it can adapt

itself to the distribution of the colours in one cluster.

The previous chapter described all colour spaces in which the appearance models can

be applied. One of them is the novel colour/geometry space hsz that describes the hue,

saturation and height of each pixel in the point cloud. This one is particularly interesting

because it includes information about the position of the pixel in the data space instead

of in the model, like the Disks and Rings model. This allows for general methods like

a mixture of Gaussians to apply to both colour and geometry at once. The next two

extensions use explicit knowledge of this construction to improve the general mixture of

Gaussians.

4.7 Semi correlated mixture of Gaussians

The covariance matrix Σ describes the covariance between the dimensions. In the hsz space

these dimensions are: a = saturation×sin(hue), b = saturation×cos(hue), z = height. The

first two dimensions span a Cartesian colour space, distances in this plane reflect distances

in colour. The third dimension denotes the height of the pixel in the real world.

(a) A person’s point cloud in the
hsz space.

(b) The result of the clustering
when three Gaussians are used.

Figure 4.8: Two plots in hsz space. Note how the clusters of colours occur on different
heights, but are not correlated to the height.

The hypothesis is that blobs of colours occur at different heights but are not linearly

correlated to the height, see figure 4.8. This information can be used to improve the

general mixture of Gaussians. We allow the mean vectors ~µi to take any value, that is a

cluster can appear at any position in the hsz space. But we limit the covariance matrices
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Σi to be of the form:

Σ =

σaa σba 0

σab σbb 0

0 0 σzz

 (4.26)

Now the colours can be correlated as before, but the height is disconnected. Graphically

this means that the Gaussian density functions have become an upright ellipsoid in the

hsz space. I expect that this will improve the separability of the colours.

4.8 Semi correlated mixture of Gaussians with separation

planes

As described in the previous section, we assume the colours of a person to appear at

different heights. Indeed, when the point clouds would be perfect, some hard edges can

be found, for example at the transition from trousers to shirt. The appearance model of

this section is an extension of the previous one that tries to find these transitions.

Normally each pixel has a probability for each of the cluster centres. In the appearance

model proposed in this section that probability is positive for the nearest cluster and zero

for all the others. The distance measure that is used to determine the nearest cluster is:

∆
l
Σ (~µ, ~x) =

√
(xz − µz)2

σ2
zz

(4.27)

The result of this assignment is as if there are horizontal separation planes (parallel to

the ab-plane) that divide the space dynamically into layers. This is similar to the Disks

model, only with dynamic disks instead of disks that are fixed at a certain height and

using a Gaussian density function instead of an uniform distribution.

I expect this model to perform well when a person’s colours are well separable, but it will

fail when people wear clothes with different colours at the same height.
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While the future implementation will be a tracking application, the models are tested by

data association using a classifier . The motivation for this simplification is that tracking

involves a great number of parameters which can add noise to the comparison of the colour

models.

The eventual tracker will use tracking by location within one field of view and recognition

by colour when a person re-appears somewhere else (see Future work, page 44). In other

words, the colour model will be used to improve the existing tracker rather than to re-

place it. Therefore, the results of this study will form a lower bound with respect to the

performance of the eventual implementation.

5.1 Data association

To compare the appearance models objectively, they were isolated from the tracking ap-

plication and tested in an off-line classifier. Two recordings were made with respectively

4 and 5 Eagle Eyes. A recorded ‘frame’ of one camera consisted of a point cloud of the

scene and a list of locations where the Eagle Eye had detected a person in that frame.

For each detected person, a cylindrical point cloud was extracted as illustrated in figure 1.2.

Each point cloud was manually assigned to one of the people featuring in the recording.

The point clouds were treated as if they were independent measurements, meaning that

the detection location and time were removed.

The point clouds of one of the cameras were chosen as test set, the point clouds of all other

cameras formed the training set. Then, one of the appearance models is trained on the

training set to form an accumulated representation for each individual in the recording.
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Subsequently, each point cloud in the test set is associated with one of the accumulated

representations. When all point clouds in the test set are classified, the results are evalu-

ated to score the concerned appearance model.

This process is repeated k times, where k is the number of cameras, assigning another

camera as test set each iteration. Repetitive testing like this is called k-fold cross validation

[7]. Each appearance model is tested as described above. The next sections will elaborate

on the training, classification and evaluation process.

5.1.1 Training

For each point cloud in the training set, an appearance model is created that forms a

representation of the detected person. The simplest model described in this paper is

the mean RGB colour of all pixels in a person’s point cloud. The feature vector of a

representation created by that model is ~µ = [r g b], a row vector where r, g and b

correspond to the mean red, green and blue values respectively. In other words, for the

point cloud P = [x y z r g b] of each detection, the means of the data vectors r, g and b

(column vectors) are calculated and stored in the feature vector ~µ that serves as abstract

representation of the detected person.

All representations of a single person in the training set are averaged to create an accumu-

lated representation of that person. Consequently than accumulated representation has

the same structure as a representation based on a single point cloud. How the represen-

tations are constructed and averaged depends on the type of model and colour/geometry

space. See also chapter 3 and 4.

5.1.2 Classification

If the appearance model is descriptive and discriminative enough, it should be possible to

assign newly detected people to one of the accumulated representations. This association

is done by calculating the distance between a the representation of this detected person

and each trained accumulated representation. The accumulated representation with the

smallest distance is chosen and the detected person is classified accordingly. The most

suitable distance measure differs per colour space and per appearance model, they are

explained in chapter 3 and 4.

In the real tracking application the classification process would be similar, but on-line,

meaning that there is no training and test set . All representations in the past are used as

the ‘training set ’ and all new representations are the ‘test set’. Each new representation

is assigned to the t́ermtrack with the best matching accumulated representation, or a
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new track is initiated when there is no appropriate match. The best matching track is

updated by the new representation. Thus a representation is first classified and then used

as training data to alter the accumulated representation of the track.

More thoughts on improvements can be found in the Future work section (page 44).

5.1.3 Evaluation

A descriptive and discriminative appearance model would be able to assign each detection

in the test set to the correct person, based on the accumulated representation created

from all previous representations of that person. The results of such a data association

can be displayed in a confusion matrix. The rows of the confusion matrix denote the

actual classes (i.e. the person of whom the detection was recorded), the columns are the

predicted classes (i.e. the person as which the representation was classified). The cells

in the matrix contain the number of detections qij that are person i and are classified as

person j, see table 5.1. By convention the actual classes and the predicted classes are in

the same order, thus a perfect classification would result in a diagonal confusion matrix.

Predicted class

1 · · · n

Actual

class

1 q11 · · · q1n

...
...

. . .
...

n qn1 · · · qnn

Table 5.1: Confusion matrix

The accuracy ai is the portion of detections Xi, that are correctly classified as person i, for

i ∈ {1, . . . , n}. The overall accuracy is defined as the total number of correctly classified

instances divided by the total number of instances. This might look like a useful measure

for the performance of an appearance model. However, when the sizes of the classes are

not equal, the overall accuracy is not accurate. In that case, it is better to calculate the

average accuracy per person, a.

Xi = {x|x is person i} Yi = {x|x is classified as person i} (5.1)

ai =
|Xi ∩ Yi|
|Xi|

=
qii∑n
j=1 qij

a =
1

n

n∑
i=1

ai (5.2)
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As described before, k-fold cross validation is used to get a reliable accuracy measure. The

accuracy of all of the k passes are averaged to obtain an average accuracy per person per

pass:

a =
1

k

k∑
i=1

ai (5.3)

5.2 Implementation

All models and methods described in this thesis have been implemented in Matlab R© for

testing purposes. Bear in mind that Matlab R© is a scripting language and thereby it is

important to pay attention to the way the algorithms are implemented. The best way to

use Matlab R© is to avoid for-loops and use as much linear algebra as possible.

5.2.1 Assumptions

This study focusses on the appearance models rather than the stereo vision or the tracking

mechanism. It is assumed that the point clouds and the exact location of each detected

person are provided. Furthermore it is assumed that the cameras are placed in an indoor

environment with constant lighting. That is, no lights are turned on or off during the

recording and the colour of all light sources is approximately equal. Especially the latter

can upset the system, as we will see in the Results section (page 39).

5.2.2 Preprocessing

The Eagle Grid is built by Eagle Vision Systems (EVS) to track people by their location

only. For a detected person Dt,i at position ~xt,i which is very close to the end of track

Tt−1,j it is likely that the Dt,i is the same person as the one that created track Tj .

Because the actual appearance of a person is currently not used by the tracker, the point

clouds do not have to be very precise. It is good enough to have clear and distinct blobs

in the z-map (see figure 1.1(e)). However, when building an appearance model these point

clouds should be more accurate; this section describes how the quality of the point clouds

is improved without altering the point cloud generation procedure. Indeed the point clouds

are given, so only post-processing is possible.
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Removing background pixels

The main problem of the current point clouds is an effect called foreground fattening . The

result is that foreground objects in point clouds appear too fat. As shown in figure 5.1(a),

pixels that belong to the background are classified as object pixels, which introduces noise

in the point clouds that pollutes the appearance models.

To correct this, the pixels that are considered background in the flat main image are re-

moved from the point cloud. A distinction between foreground and background is made

by subtracting a background image from the main image and calculating the difference.

All pixels with a difference less than half the maximum measured difference are consid-

ered background and therefore they are removed from the point cloud. This is a basic

background subtraction method, more advanced methods exist, but this one is fast and

effective enough. See figure 5.1(b) for an example.

(a) The originally extracted point
cloud.

(b) The point cloud after removing
foreground fattening.

(c) The cylinder has been shifted
to fit the person.

Figure 5.1: Removal of the foreground fattening effect and re-centring the cylinder

Refining the position detection

The position of a person is provided by the Eagle Eye together with a point cloud of the

scene. My algorithm extracts a cylinder with a radius of 30 centimetres and a height of

2.20 metres. These values are heuristically chosen to contain the point cloud of a person.

This cylinder contains a subset of the original point cloud and should contain the person

entirely. Because the location returned by the Eagle Eyes is not always accurate, the

person often appears at the edge of a the cylinder. This is corrected by iteratively shifting

the cylinder to fit the person. Every iteration the cylinder is moved to the centre of mass
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of the points inside it. Then a new subset is extracted from the original point cloud and

the cylinder is shifted again.

There are no scientific results of this method, but it was tested on ±50 randomly selected

people and point clouds, and every time it gave similar results as shown in figure 5.1(c).
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Experiments

The previous chapters explained how 38 appearance models have been developed and how

they should be evaluated. This chapter will provide the parameters and circumstances

under which the experiments are conducted and finally the results will be presented.

6.1 Setup

When building any computer vision system, the danger of over-specialisation always looms

ahead. One of the first thing a vision researcher does when a problem has to be solved

is looking at the data. This means that whatever he or she will develop, it will be based

on assumptions about the data. Some of those assumptions are explicit (steady lighting,

indoor environment, using stereo cameras), but some are more implicit, or latent. To

guard the integrity of the results, the models of this study are evaluated on two different

datasets. One was recorded at Eagle Vision Systems (EVS) and was used to develop the

models, the other was recorded at Philips Shop Lab (PSL) and has remained unseen until

all models were finished. Not only were the recordings held at different locations, also

different cameras were used, different lighting was applied and different people featured in

the recordings.

The first recording was held at EVS’s test bed, this is EVS’s test room where there system

is constantly running to test its performance and to try new features. The testbed dates

from before the development of the Eagle Eye and is equipped with six commercial stereo

cameras, called Bumblebees. The Bumblebees are permanently mounted on a frame such

that their fields of view overlap, four of them were used for the first recording. Nowadays

the six Bumblebees are accompanied by four Eagle Eyes.
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In the first recording three people were walking around, one of them changed clothes

twice (out of sight); they were treated as 5 ‘individuals’. Their clothing was relatively

simple, shirts and pants with one clear dominant colour. The people entered and exited

the area several times and they were captured at least once by each camera. The area was

illuminated by fluorescent tubes, which caused a little flickering in the recorded frames.

The second recording was held at Philips Shop Lab, a laboratory built by Philips to test all

kinds of technology applicable to shops. This time 5 Eagle Eyes were temporarily mounted

such that their fields of view did not overlap. Now two people were walking around, and

again one of them changed clothes twice; they were treated as 4 ‘individuals’. The fabric

of their clothing contained more structure, like stripes and patches across their shirts and

jackets. The people were walking around the lab acting as if they were shopping. They

were captured at least once by four of the cameras, one camera captured only two of

them. The Shop Lab area was illuminated by all kinds of lighting; daylight, fluorescent

light, LED light and coloured spot lights.

Refer to table 6.1 for an overview of the recording parameters.

Dataset A Dataset B

EVS.5 PSL.2

Location Eagle Test Bed Shop Lab

Company Eagle Vision Philips

Date/time 28-10-2011 13:22:17 20-03-2012 14:02:52

Camera type Bumblebee2 EagleEye

Lighting fluorescent various

Overlap yes no

Cameras 4 5

Individuals 5 4

Height 2.82m 2.51m

Camera fov 2.1m × 2.9m 1.8m × 2.6m

Covered area 3.6m × 4.8m 10.1m × 8.0m

Frames 4 × 799 5 × 2112

Duration 1m20s 7m05s

Table 6.1: Parameters of the two recording sessions.

The recordings have been manually annotated; that is, each detection made by the existing

software of EVS is manually assigned to the correct person (or marked as noise if it was a

misclassification).
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6.2 Parameters

For each model the parameters are heuristically chosen, so that similar models have similar

numbers of parameters, and a meaningful comparison can be performed. The number of

histogram bins is around 100, the single mean model has no parameters, the disk model

uses 3 disks in accordance to Zajdel et al. [1], the ring models uses 4 cylinders× 9 disks =

36 rings and the kernel models use 4 kernels (based on the expectation that a person has

around 4 distinct colours; legs, torso, face, hair).

Section 4.1 describes the histogram models. The number of bins can not be arbitrarily

chosen, for instance the RGB histogram will always have n3 bins for n ∈ N≥1. The exact

number of bins differs per colour space, table 6.2 provides an overview which I also will

explain in text. Firstly the RGB histogram is three-dimensional and contains 5 × 5 × 5

bins (figure 4.1(a)), the rgb histogram is divided into 14 × 14 squares and almost half of

the squares is unused (figure 4.1(b)). The HSV space is divided in 4 layers perpendicular

to the value axis, each layer is split up using the radial histogram of figure 4.3(b) with 1

to 4 rings (figure 4.4(b)). Since the hue is one-dimensional, it can be divided in exactly

100 bins. The hs space is divided like figure 4.4(b), only with 6 rings and the hsz space

is divided into 4 layers and each layer was divided as the radial histogram of figure figure

4.4(b) with 3 rings.

colour histogram bins or

space shape composition of bins/kernels kernels

RGB cube 53 125

rgb triangle 14× (14 + 1)/2 105

HSV cone 3× 12 + 3× 22 + 3× 32 + 3× 42 90

hue circle 1× 100 100

hs disk 3× 62 108

hsz cylinder 4× (3× 32) 108

Table 6.2: Composition of the histograms

6.3 Results

All results of the automated evaluation process are shown in appendix D. A selection of

these results are the average accuracies per person shown in table 6.3 and 6.4.
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bins or kernels RGB HSV hue rgb hs hsz

Histogram ±100 0.452 0.708 0.918 0.897 0.933 0.929

Single mean 1 0.675 0.804 0.515 0.830 0.793 0.703

Disks 3 0.713 0.888 0.688 0.890 0.891 0.890

Rings 36 0.751 0.932 0.845 0.897 0.923 0.928

k-Means 4 0.643 0.901 0.662 0.840 0.899 0.891

Mixture of Gaussians (MoG) 4 0.848 0.860 0.666 0.878 0.856 0.774

MoG - Semi correlated 4 0.750

MoG - Separation planes 4 0.512

0.5 0.9

Table 6.3: Average accuracy of each model / colour space combination in the Eagle
Vision recording, averaged over 4-fold cross validation. The average of all values displayed

in this table is 0.764.

bins or kernels RGB HSV hue rgb hs hsz

Histogram ±100 0.382 0.367 0.352 0.370 0.327 0.423

Single mean 1 0.340 0.326 0.356 0.336 0.382 0.385

Disks 3 0.399 0.400 0.301 0.296 0.316 0.307

Rings 36 0.350 0.396 0.297 0.340 0.378 0.365

k-Means 4 0.353 0.334 0.346 0.395 0.388 0.431

Mixture of Gaussians (MoG) 4 0.283 0.251 0.322 0.325 0.222 0.232

MoG - Semi correlated 4 0.291

MoG - Separation planes 4 0.111

0.2 0.4

Table 6.4: Average accuracy of each model / colour space combination in the Shop Lab
recording, averaged over 5-fold cross validation. The average of all values displayed in

this table is 0.321.

Overall the models perform much better in the EVS dataset than in the PSL dataset. The

people in the EVS dataset wore very distinctly coloured shirts and the illumination is quite

constant, compared to the PSL dataset. This makes the latter dataset more complex, but

also more realistic.

The chromaticity models rgb, hs and hsz perform best. There is no significant difference

in performance between them. The reason that they perform so well is that they describe

the actual colour of an object without any luminance influences. Highlights and shadows,

which occur much more often than we are aware of (figure 3.1), have less effect on these

chromaticity spaces.
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Due to variance the luminance, the RGB colour space is expected to perform badly on

these datasets. The results in table 6.3 and 6.4 show that this is indeed the case. HSV,

which is also a full colour space, performs just as good as the hs space. An explanation is

that the effect of the luminance is only reflected in the value dimension, which is better

than when it is reflected in all three red, green and blue dimensions.

Furthermore, as explained in section 3.4 the hue space is expected to perform badly because

the images are poorly saturated which causes noise in the hue space. Secondly, there is no

correct way to calculate the mean hue, which causes problems in the mean colour based

appearance models. And indeed, both table 6.3 and 6.4 show a column with low values

in the hue column. Except for the histogram models in the EVS recording because the

histograms do not use a mean and because the people of the EVS recording wore very

distinctly coloured shirts.

The expectation was that the hsz space would perform best because some of the geometrical

information is included in this space. however, the results provide no proof that it performs

better than other spaces. While examining the point clouds, they seemed quite noisy,

especially in the z direction (i.e. the height). This noise might be the reason that the

geometrical information does not add any value. The reason that this noise was never

reduced by EVS is simply that it was not relevant before. During the development of the

Eagle Grid they focussed on building a robust detection method rather than a detailed

description of a person’s appearance.

As one should expect, the Single mean model performs the worst of all. The appearance

of a person is simply too complex to fit into a single colour. The histogram models are,

as expected, among the best performing models (at least in the chromaticity spaces). The

reason for this is that the are able to capture complex distributions. As discussed in section

4.1 the histograms use a relatively long feature vector of approximately 100 elements.

The disks model performs surprisingly well with a feature vector of only 3, 6 or 9 elements

(depending on the colour space) and is very easy (i.e. fast) to calculate. It performs

much better in the EVS recording than in the PSL recording, probably because the PSL

recording contains to much noise. The rings model performs even better. A person’s shape

is implicitly embedded in these models, which might be interesting to investigate further.

The hypothesis was that a mixture of Gaussians would perform best among the non-

histogram models. During the development it seemed to work well, but in this comparison

one can easily see that it is not as good as some others. The suggested improvements

perform slightly worse than the original mixture of Gaussians. This might be caused by

the noise in the point cloud. For the mixture of Gaussians model with separation planes,

the assumption that different colours would occur at different heights was made, which is

not always true.
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Conclusion

Looking at the results of the EVS dataset, one may say that it is indeed possible to build

an appearance model that can be used to recognise individuals. Some of the accuracy

values are above 0.9, meaning that the predictions were more than 90% correct. The PSL

dataset however, shows a maximum accuracy of around 0.4, which is unacceptable for a

real-world application. Nevertheless, as discussed before, the point clouds are noisy and

this is something that could be improved.

Please note that a random data association would result in an average accuracy of 0.200

for the EVS recording and 0.250 for the PSL recoding. That is because the EVS and PSL

recordings featured 5 and 4 people respectively.

The results of the first data set show that RGB and hue are not suitable for the re-

identification of people. Despite that there is not enough significant evidence to point out

the best colour model from these experiments, the results of both data sets indicate that

the histogram models, the ring models and the k-means models perform best, especially

in the hue-saturation space and the hue-saturation-height space.

The three variants of the mixture of Gaussians should have been an improvement on k-

Means, but they are not. The normal mixture of Gaussians was introduced to capture the

variance in all directions, but it suffers greatly from the noise in the point clouds. The

two other mixture of Gaussians models use the z information to improve the separation

between the colours and again precisely because of the noise in this dimension they perform

worse than any other.

The best conclusion to draw is that the hue-saturation-height space should be further

investigated and improved. The point-cloud creation should be revised or at least its

parameters should be adjusted such that an accurate point cloud is created. For now the

hue-saturation-height space should be used in a histogram or a k-means model.
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One should choose one of tested appearance models depending on the requirements. His-

tograms can be constructed very fast and in constant time, whereas the k-means requires

many more calculations. Furthermore, the execution time of k-means depends on the

distribution of the data and the initialisation of the cluster centres. On the other hand,

generally histograms produce feature vectors that are much longer (e.g. 108 elements)

than the feature vectors constructed by k-means (e.g. 8 or 12 elements). The current

results show that k-means outperforms the mixture of Gaussians in almost every colour

space, especially when the amount of noise is high. But still, if the level of noise is reduced,

the mixture of Gaussians should be able to describe the distribution of the data better

than k-means (see figure 4.7).

7.1 Future work

This section will describe a number of thoughts for future research. Some of them are just

ideas, others are important implementation notes. The latter are tuned for implementation

within the Eagle Grid.

7.1.1 Classify tracklets instead of detections

This research focussed on finding the best appearance model to describe a person. Never-

theless, in a real world implementation one should use tracking by position within a single

field of view. Such a sub track is called a tracklet and all tracklets of a person form its

track. The tracking by position algorithm of Eagle Vision Systems (EVS) is very robust

and the colour model should be an extension to that algorithm, not a replacement. The

tracklet could be assigned to one of the known tracks after the person leaves the field of

view. By then there is enough information to update the track reliably.

A tracklet does not only contain more information, but also better information. At the

edge of the field of view, the detections are very noisy, so the moment a person enters the

view is not the right moment to classify it. On the other hand, when a person is exactly

underneath a camera, his or her clothes can barely be seen. Classifying a complete track

at once would reduce the effect of these artifacts.

Ultimately, a tracklet should save the point clouds of each detection and create a single

representation of all those combined point clouds at once. Unfortunately this is not possible

in the current implementation of the Eagle Grid. The Eagle Eyes have no knowledge about

previous detections, tracklets or tracks, they only send a list of representations per frame

to the central tracker. Sending the entire point cloud would result in too much data traffic

and implementing a local tracker in the Eagle Eye would break the current design.
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If we want to keep the design intact, a solution would be buffer all representations of a

tracklet in the global tracker and average them when a tracklet is completed. Then classify

the entire tracklet at once and update the assigned track. Another option would be to

break the design and allow for local tracking within the Eagle Eyes.

Moreover, the representations could be extended with a reliability measure. This can be

done dynamically by the Eagle Eyes or statically by the Eagle Tracking Engine. The latter

would involve a recency/latency function that assigns a lower reliability to the first and

last couple of representations. They are expected to contain much noise because they are

probably taken from the edge of the field of view. It could also use a heuristic value based

on the location in the field of view. However, in the current implementation, the tracker

has no knowledge of the position or angle of view of the Eagle Eye.

7.1.2 Classify partial tracklets

Classifying a tracklet after it is completed, as suggested in the previous section, is suitable

for statistical analysis, but not if you want to know who is walking around at this very

moment. A variation would be to classify the partial tracklet in real time, acting every

iteration as if the tracklet was completed. This online classification is only temporary, to

display to the user, the track should only be updated when the tracklet is completed.

7.1.3 Improve the point clouds

As mentioned several times before, the point clouds are not very accurate and an im-

provement in the point clouds could have a major effect of the performance of the colour

models. Because the point clouds were provided externally, this study has not focused on

building point clouds and I do not have any suggestions how to improve them. But is it

clear that the point clouds are noisy and that people are inaccurately distinguished from

the background. The first problem result in an inaccurate height estimation of the pixels

(used by some models / colour spaces). The last problem results in background pixels

being added to the foreground, disturbing the colour measurements.

7.1.4 Use an illumination-invariant chromaticity space

In this research some of the most common colour spaces are used, however, there do exist

more advanced colour/chromaticity spaces. For example [2] describes a chromaticity space

which is invariant under the colour and intensity of the illuminating light source. This is

especially interesting when the sensors are distributed over a large area where the light

sources differ per sensor.
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There are more papers that conducted experiments on colour spaces, Gevers and Smeulders

[11] for instance compared 8 colour spaces on 7 different aspects and shows a clear overview

of which model to use under which circumstances. And Gevers [4] even describes 14 colour

spaces on 9 different conditions. These could be used as an improvement on the models

discussed in this thesis.

7.2 Final conclusion

To conclude, this study introduced a novel way of dividing a circle-area for the purpose of

uniformly binning a radial space. These histograms formed the baseline for testing other

methods like calculating one or more means, fitting a mixture of Gaussians and others. k-

Means performed just as well as the histograms (in the chromaticity spaces), producing a

much smaller representation, but using more computational resources. Some other models

perform a little less, but improving the quality of the point clouds will contribute to their

performance.



Appendix A

Arctangent for vectors of 2

elements

The arctan2(~x) is a slightly adapted version of the arctan2(x1, x2) function that works on

a row vector ~x = [x1 x2] instead of two scalars x1 and x2 and whose range is [0, 1) instead

of [−π, π).

arctan2(~x) =



1
2π arctan

(
x1
x2

)
if x2 > 0

1
2π arctan

(
x1
x2

)
+ 1

2 if x2 < 0

1
4 if x2 = 0, x1 > 0

3
4 if x2 = 0, x1 < 0

0 if x2 = 0, x1 = 0

(A.1)

.

In Matlab R©:

1 function a = arctan(x)

2 a = mod(atan2(x(1), x(2)) / (2∗pi), 1);

3 end
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Radial Bins

B.1 Proof of equally sized bins

The concept of equally sized radial bins is firstly proven for a circle with radius r = n ∈ N≥1

which is divided into n rings and k = n2 bins. Subsequently this will be scaled to match

the actual case for the hue-saturation space where the radius is fixed at r = 1 and there

are three times as many bins to make them more square like, k = 3n2.

B.2 The basic circle area distribution

Figure B.1: Three circles with radius rn = n ∈ {1, 2, 3}, all divided in n2 equally sized
bins.
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To prove: When a circle with radius rn = n ∈ N≥1 is divided in n rings of equal width

and each ring i (counted from the centre) is divided into ki = 2i − 1 equally sized bins,

the area of each bin in each ring is equal, π to be precise. See figure B.1.

Proof. The circle-area of the ith circle is ai = πr2
i = πi2 and the ring-area bi is:

bi = ai − ai−1 (B.1)

= πi2 − π(i− 1)2 (B.2)

= (2i− 1)π (B.3)

Thus, if each ring i with area bi = (2i − 1)π is divided into ki = 2i − 1 bins, the area of

each bin in each ring is bi
ki

= π.

B.3 The adapted bin distribution

Figure B.2: Three circles width radius rn = 1, n ∈ {1, 2, 3}, each divided in 3n2 equally
sized bins.

To prove: When a circle with radius r = 1 is divided in n rings, n ∈ N≥1, of equal width

and each ring i (counted from the centre) is divided into ki = 3(2i− 1) equally sized bins,

the area of each bin in each ring is equal, 1
3n2π. See figure B.2.

Proof. The previous proof showed that a circle with radius r = n, n ∈ N≥1 can be divided

in k = n2 equally sized bins. If r is fixed at r = 1 then ri = i
nr = i

n , i.e. the entire circle

is scaled. Furthermore if each bin would be divided in 3 equal parts a circle can also be

divided in k = 3n2 equally sized bins (see figure B.1 and B.2). Similar to equation B.1 to
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B.3:

bi = ai − ai−1 (B.4)

= π(ri)
2 − π(ri−1)2 (B.5)

= π

(
i

n

)2

− π
(
i− 1

n

)2

(B.6)

= π
2i− 1

n2
(B.7)

The number of bins has been multiplied by 3, so ki = 3(2i − 1) and the size of a single

bin in ring i is bi
ki

= π(2i−1)/n2

3(2i−1) = π
3n2 , which is independent of i, so again, all bin-areas are

equal.





Appendix C

k-Means++

This appendix shows the pseudo code of the algorithm mentioned in section 4.5 (k-Means).

It is an alternative for random initialisation of k-means. The cluster centres are chosen

by random sampling, but the chance a data point is chosen depends on its distance to the

existing centres. See “k-means++: the advantages of careful seeding” [8] for more details.

Algorithm 2 k-Means++ initialisation

Input: A pixel set X with n pixel vectors xj of length m.
~µ1 ← randomSample(X)
for i = 2→ k do

for j = 1→ n do
δj = min~µa∈M ∆E(~xj , ~µa)

end for
for j = 1→ n do

pj =
δ2j

sum(δ2)

end for
~µi ← weightedRandomSample(X,p)

end for

53





Appendix D

All Results

The next two pages show the mean average accuracy per person of all tested appear-

ance models in both data sets. The nine subsequent pages show the number of correct

classifications per person per fold.
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Rgb Nrgb Hsv Hue Hs Hsz

GroundTruth 1.000 1.000 1.000 1.000 1.000 1.000

Random 0.202 0.202 0.202 0.202 0.202 0.202

Histogram 10 0.294 0.801 0.629 0.746 0.824 0.756
Histogram 30 0.400 0.732 0.677 0.828 0.875 0.860
Histogram 100 0.452 0.897 0.707 0.918 0.933 0.929
Histogram 300 0.600 0.906 0.707 0.878 0.929 0.938

Mean 0.675 0.830 0.804 0.515 0.792 0.703

Disks 2 0.700 0.885 0.879 0.638 0.877 0.889
Disks 3 0.713 0.890 0.888 0.688 0.891 0.890
Disks 4 0.706 0.895 0.883 0.681 0.861 0.865
Disks 6 0.713 0.907 0.900 0.661 0.892 0.889

Rings 10 0.704 0.863 0.886 0.700 0.868 0.884
Rings 30 0.751 0.897 0.932 0.845 0.923 0.928
Rings 100 0.754 0.913 0.924 0.845 0.925 0.926
Rings 300 0.761 0.919 0.931 0.874 0.931 0.932

Kmeans 2 0.661 0.870 0.885 0.520 0.877 0.771
Kmeans 3 0.636 0.807 0.889 0.577 0.882 0.876
Kmeans 4 0.643 0.840 0.901 0.662 0.899 0.891
Kmeans 6 0.693 0.895 0.910 0.582 0.915 0.894

Mog 2 0.809 0.892 0.862 0.557 0.827 0.813
Mog 3 0.826 0.875 0.836 0.553 0.878 0.767
Mog 4 0.848 0.878 0.860 0.666 0.856 0.774
Mog 6 0.788 0.862 0.818 0.605 0.899 0.754

MogSC 2 0.786
MogSC 3 0.762
MogSC 4 0.749
MogSC 6 0.765

MogSP 2 0.687
MogSP 3 0.631
MogSP 4 0.512
MogSP 6 0.393

0.5 0.9

Table D.1: Average accuracy of the models in the EVS recording.
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Rgb Nrgb Hsv Hue Hs Hsz

GroundTruth 1.000 1.000 1.000 1.000 1.000 1.000

Random 0.212 0.212 0.212 0.212 0.212 0.212

Histogram 10 0.375 0.310 0.356 0.338 0.307 0.347
Histogram 30 0.399 0.386 0.322 0.355 0.359 0.293
Histogram 100 0.382 0.370 0.367 0.352 0.327 0.423
Histogram 300 0.373 0.363 0.368 0.342 0.331 0.369

Mean 0.340 0.336 0.326 0.356 0.382 0.385

Disks 2 0.412 0.270 0.421 0.315 0.312 0.281
Disks 3 0.399 0.296 0.400 0.301 0.316 0.308
Disks 4 0.372 0.310 0.372 0.287 0.334 0.330
Disks 6 0.352 0.316 0.365 0.293 0.359 0.369

Rings 10 0.337 0.332 0.369 0.308 0.389 0.394
Rings 30 0.350 0.340 0.396 0.297 0.378 0.365
Rings 100 0.352 0.352 0.379 0.314 0.368 0.369
Rings 300 0.336 0.324 0.364 0.305 0.354 0.355

Kmeans 2 0.326 0.330 0.287 0.199 0.390 0.376
Kmeans 3 0.331 0.322 0.298 0.302 0.369 0.388
Kmeans 4 0.353 0.395 0.334 0.346 0.388 0.431
Kmeans 6 0.358 0.393 0.364 0.304 0.409 0.406

Mog 2 0.331 0.341 0.350 0.263 0.413 0.335
Mog 3 0.291 0.336 0.251 0.323 0.390 0.263
Mog 4 0.283 0.325 0.252 0.322 0.222 0.232
Mog 6 0.252 0.324 0.178 0.302 0.327 0.304

MogSC 2 0.379
MogSC 3 0.302
MogSC 4 0.291
MogSC 6 0.297

MogSP 2 0.205
MogSP 3 0.172
MogSP 4 0.111
MogSP 6 0.174

0.2 0.4

Table D.2: Average accuracy of the models in the PLS recording.
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