
Reconstructing a 3D structure from unknown viewpoints using

uncalibrated cameras

B. Stoeller, T. Kostelijk, F. Huizinga

{mailtjerk,folkerthuizinga,bramstoeller}@gmail.com

January 29, 2010

Abstract

In this report we consider the problem of computing the 3D structure of an unknown
arbitrarily-shaped scene from two photographs taken at unknown viewpoints using
uncalibrated cameras.

1 Introduction

In this report we consider the problem of computing the 3D structure of an unknown arbitrarily-
shaped scene from two photographs taken at unknown viewpoints using uncalibrated cameras.
Our initial idea was to create a 3D object recorder which runs on a cell phone with a camera
and an Internet connection, like a Google Android G1, an iPhone or any other smart phone.
The user takes several pictures of an object which are sent to a server. This server computes
a 3D model and pushes the model back to the cell phone. This allows one to share 3D models
with your friends. This paper focusses on a prototype where several images are combined to
form a 3D model of the real object as accurate as possible.
Reconstructing the structure of a 3D scene from two (or more) photographs is a fundamental
problem in computer vision. It is also referred to as multiple view geometry [1]. If the internal
and external camera parameters are known it is very well possible to achieve such a model from
a set of photographs. However we do not have any information about the position of the camera1

nor do we have information about the internal camera parameters due to the auto focus function
of type of devices. This significantly increases the complexity of the problem.
Sections 2 to 11 describe a way to obtain information about the 3D space from only the infor-
mation embedded in a set of photographs without knowing anything about the real world. Next
we describe two methods to create an actual 3D model and we discuss the differences between
these two approaches.

1One might suggest to use the sensors of a G1 or iPhone as an a priori estimation the of orientation of

the camera, but we chose to use a method which is device independent and leave the sensor fusion as a future

improvement.

1



1.1 Notations

We use italic characters for scalars like x. Two dimensional vectors are denoted by bold mi-
nuscules (lower case) like x while three dimensional vectors are denoted by bold majuscules
(upper case) like X. We always use homogeneous coordinates unless stated otherwise. I.e. a 2D
point is written as a 3 × 1 vector: x = (x y 1)⊤. A line/ray between two points X1 and X2 is
represented by 〈X1,X2〉. A matrix is denoted by a typewriter character like F. We always use
round parentheses for vectors and matrices except when we describe the contents of a composed
matrix like P = [I|0]. I.e. the matrix P consists of an identity matrix I (e.g. 3 × 3) followed
by a zero vector ~0 (3 × 1) resulting in a 3 × 4 matrix. Finally the skew-symmetric matrix [1]
(equation A4.5, pp. 581) of a vector e is denoted by [e]×.

2 Feature Extraction

To determine the 3D structure of a scene the unknown viewpoints of the photographs need to be
computed. The viewpoints are calculated using stereo correspondence. Stereo correspondence
is the process where features from both photographs are extracted and compared see figure 1.
The locations of the matching features will be used as a source of determining the viewpoint of
the cameras. This section describes the feature extraction process.

Figure 1: SIFT

2.1 SIFT

Because the accent of this paper is not the feature matching and lots of research is done in this
field we use a standard feature extractor. We use the feature extractor SIFT, scale-invariant
feature transform. This method, invented by David G. Lowe [2], is very popular and widely
used. SIFT extracts features that are invariant to scaling, rotation, changes in illumination and
even changes in viewpoint. These invariants are useful for finding point correspondences within
two different views. We use a Matlab implementation of [3] In standard form, SIFT returns
thousands of features. 100 Features will be more than enough to feed our algorithms. We
experimented with several thresholds values to keep the retrieved features small. An example
of the SIFT algorithm performed on a Lion King cup with threshold can be seen in figure 1 [4].

3 Feature Matching

Given the SIFT features within two images, the task is now to find point correspondences be-
tween the two images {xi ↔ x′

i}. These correspondences are found by comparing all features
between the two images in a brute force manner.

2



If we compare the location of the features in the two photographs, we observe a location dif-
ference, furthermore called shift. This shift is caused by the difference in viewpoints of the
photographs.

3.1 Removing outliers

Because the features are compared without taking their location within the images into account,
some correspondences of points are found that do not describe the same point in the original
scene. These unwanted correspondences are outliers and need to be removed from the dataset.
A common method to remove outliers is RANSAC, however because of time constraints we
decided to apply a much simpler method of removing outliers with fairly good results.

3.2 Mean shift outlier removal

We use the fact that outliers have the property that they performed a shift that is either to
large or too small compared to the mean shift of all the features in the first and second image.
We iteratively remove the most extreme outlier and recompute the mean shift. An advantage is
that the previous outliers does not influence this mean shift.

4 Multiple View Geometry

π

Π
Π′

baseline

l
l′

b

C b

C′

bX

b x

bx′

b

e b

e′

Figure 2: Multiple view geometry

Figure 2 shows a stereo graphic scene setup. Two cameras are indicated by their camera centers
C and C′ and their image planes or retinas Π and Π′ respectively. The camera centers, 3D point
X, and its images x and x′ lie in a common plane π. The line 〈C,C′〉 is called the baseline and
intersects the image planes Π and Π′ at epipoles e and e′ respectively. These are the locations
on the retina where the other camera center can be seen. An image point x back projects to a
ray 〈C,X〉 in the 3D space. This ray is represented as the epipolar line l′ on retina Π′. So even
if we don’t know the exact location of X, given the position of x we can calculate the epipolar

3



line or scan line l′ where point x′ must appear. And if we do know the a corresponding x and
x′ we can calculate the intersection between the ray from C through x and the ray from C′

through x′ which should be the real 3D point X.

5 Epipolar geometry

Suppose a scene is viewed from different sides in two photographs. As can be seen in figure 2,
3D point X is now viewed as x in the first and x′ in the second image. The camera centers C

and C′ of the images Π and Π′ are connected with a baseline. Every view has a corresponding
epipole e which is defined as the point of intersection of the baseline with the corresponding
image plane. The epipolar plane contains this baseline, and the epipolar line l is the intersection
of this epipolar plane π with the image plane Π. A point x in the left image Π will correspond
to a point x′ on the epipolar line l′ in the right image Π′ and vice versa. The position on
the epipolar line l′ depends on how far away the underlying 3D point X is positioned, i.e. the
distance between C′ and ′X.

6 Fundamental Matrix F

The fundamental matrix or bifocal tensor, describes the epipolar geometry between two images
[5]. See figure 2. It is the key concept in stereo vision where the internal parameters of the
cameras are unknown.
The fundamental matrix F, therefore plays an important role in the construction of the 3D
structure. It defines the mapping between a 2D point x in the first image to the corresponding
epipolar line as l′ = Fx. Because the rays defined by points x and x′ are coplanar we can state a
very useful property of the fundamental matrix, x′⊤

Fx = 0. This property is exploit to compute
F.

6.1 Solving F

If we use seven known point correspondences xi ↔ x′

i we can rewrite x′⊤

i Fxi = 0 as an 7 × 9
system of non homogeneous linear equations.

A =





















x1x
′
1

x1y
′
1

x1 y1x
′
1

y1y
′
1

y1 x′
1

y′
1

1
x2x

′
2

x2y
′
2

x2 y2x
′
2

y2y
′
2

y2 x′
2

y′
2

1
x3x

′
3

x3y
′
3

x3 y3x
′
3

y3y
′
3

y3 x′
3

y′
3

1
x4x

′
4

x4y
′
4

x4 y4x
′
4

y4y
′
4

y4 x′
4

y′
4

1
x5x

′
5

x5y
′
5

x5 y5x
′
5

y5y
′
5

y5 x′
5

y′
5

1
x6x

′
6

x6y
′
6

x6 y6x
′
6

y6y
′
6

y6 x′
6

y′
6

1
x7x

′
7

x7y
′
7

x7 y7x
′
7

y7y
′
7

y7 x′
7

y′
7

1

















































F11

F12

F13

F21

F22

F23

F31

F32

F33





























=





















0
0
0
0
0
0
0





















(1)

It is easy to see that the parameters of this equation constructing F can be solved by performing
a singular value decomposition (SVD). We used the fact that [USV⊤] = svd(A), where the last
column in V is equal to the entries of F. Now we have solved the correspondence between the
points in one image and the epipolar line in the other image.

7 Epipolar parametrization

This section explains how to calculate the epipoles, let

F =





a b αa + βb
c d αc + βd

α′a + β′c α′b + β′d α′αa + α′βb + β′αc + β′βd



 (2)

4



And the two epipoles are defined as (α, β,−1)⊤ and (α′, β′,−1)⊤ And can be calculated by
isolation or, better, by computing the kernel of F. See equation 2 based on [1] (equation 11.8,
pp. 296) for more details.

8 Projection Matrices P, P
′

A projection matrix P maps every 3D point X in the real world to some 2D point x on the
retina Π of a camera. The 3D space is defined in the origin of the first camera. This means that
camera center C is located at (x, y, z)⊤ = (0, 0, 0)⊤ and it is looking in the direction (0, 0, 1)⊤.
Therefore the projection matrix P of C is defined by a 3 × 4 identity matrix P = [I|0]:

P =





1 0 0 0
0 1 0 0
0 0 1 0



 (3)

The transformation x = PX from a 3D point X to a 2D point x in the first camera is given by:





1 0 0 0
0 1 0 0
0 0 1 0













x
y
z
1









=





x
y
z





homogeneous
≡





x/z
y/z
1



 =





x′

y′

1



 (4)

Which is quite intuitive as the larger the distance (z) between the camera and a point X, the
closer x is to the center of the retina. And therefore objects farther away appear smaller than
objects close to the camera. The other camera is shifted and rotated over three axis. The
projection matrices corresponding to a fundamental matrix F may be chosen as P = [I|0] and as
suggested by Luong and Viéville [6] P′ an be defined as P = [[e′]×F |e′]. Where [e′]× is defined
as the skew-symmetric matrix of e′:

[e]× =





0 −e3 e2

e3 0 −e1

−e2 e1 0



 (5)

9 Triangulation

If the two rays from image points x and x′ are back-projected in the scene they intersect at
the 3D point X they describe. Since the correspondences x and x′ come from measurements
the rays are skew and will therefore not exactly intersect. To asses this problem one should
use a method to estimate this intersection given the measurements x, x′ and the corresponding
projection matrices P and P

′. Intuitively one would determine the intersection as the midpoint
of the common perpendicular to the two rays in space. But this method is not suitable because
concepts as distance and perpendicularity are not valid in the context of projective geometry.
i.e. this method will give different results depending on the projection. Instead, a projective-
invariant method triangulation is used. The key idea of triangulation is to estimate the 3D point
X̂ which satisfies

x̂ = PX̂, x̂′ = P
′X̂ (6)

Where x̂ is an adapted image point of x. Because this method only minimizes distances in
the 2D image, the projections will not have any influence which makes this method projective
invariant.
To obtain the 3D point X̂. We can combine equation 6 into a form AX = 0.
x = PX implies that x × (PX) = 0, writing this out gives:

5



(x y 1) ×





p11 p12 p13

p21 p22 p23

p31 p32 p33



X (7)

= (x y 1) ×





p⊤
1

p⊤
2

p⊤
3



X (8)

= (x y 1) ×





p⊤
1
X

p⊤
2
X

p⊤
3
X



 (9)

y(p⊤
3
X) − (p⊤

2
X) = 0

(p⊤
1
X) − x(p⊤

3
X) = 0

x(p⊤
2
X) − y(p⊤

1
X) = 0

(10)

Using the linear independent equations for both images we get:

A =









xp⊤
3
− p⊤

1

yp⊤
3
− p⊤

2

x′p⊤
3
− p⊤

1

y′p⊤
3
− p⊤

2









(11)

Now the 3D point X̂ is estimated.

10 Perspective Correction

The point cloud obtained by triangulation described previously is suffering from perspective
distortion, see figure 3. This is a direct result from the constructed projection matrices that
do not take the vanishing points into account. This section describes the steps to remove this
projective distortion by upgrading it to a metric reconstruction. Properties as parallelism,
ratio between lines and ratio between areas are lost in the projective reconstruction. An affine
projection would be more useful because it recovers these properties. The recovery of the affine

Figure 3: borrowed from [1] (figure 10.6, pp. 276)

properties involves finding the line l∞ at infinity which describes the horizon. Parallel lines
on the Euclidean plane intersect on l∞ so one could for example use this property to identify
the lines that intersect on l∞ as parallel on the original plane. However a less intuitive but
more general approach would be to transform the l∞ to its canonical position in the projection
(0, 0, 0, 1)⊤.
To make this more clear, consider a point X lying on this canonical position, such that it
satisfies (0, 0, 0, 1)⊤ · X⊤ = 0. It shows directly that this point should be of the form X =

6



(x, y, z, 0)⊤ where x, y, z are arbitrary and the homogeneous factor should be 0. Transforming
this homogeneous coordinate to real word coordinates involves division by this homogeneous
factor of 0 which causes all points on this canonical line to lie at the (infinite) horizon. To

Figure 4: borrowed from [1] (figure 2.12, pp. 47)

transform the line of infinity in the image l∞ to its canonical representation we have to find
a transformation H such that H

−1l∞ = (0, 0, 0, 1)⊤. H
−1 can be calculated using a Householder

matrix [1]. Next the transformation H is applied to all 3D points in the projective reconstruction.
The affine reconstruction is now realized see figure 4.
This reconstruction is far more useful but real Euclidean measurements cannot be made. A
second upgrade should be performed, the metric reconstruction. This again involves searching
for a homography where a Cholesky factorization is used. Unfortunately, due to lack of time,
we did not fully comprehend this.

11 3D Model Reconstruction

Now that the projection matrices are estimated for both cameras we can start the 3D recon-
struction. We will provide the reader with a quick overview of two different methods suited for
obtaining the 3D model.

11.1 Point Cloud and RANSAC

As explained in section 9, given the projection matrices, we can triangulate all point corre-
spondences obtained by sift to construct a point cloud. This point cloud can then be used to
create a polygonal structure using the RANSAC technique: random 3-point subsets of the data
are selected to define planes and the number of 3D points which are less than a user-specified
distance from each plane are counted. The plane with the greatest number of consistent points
is stored, and the data points which were consistent with it removed from the structure [7]. The
image of the camera most perpendicular to a polygon can be chosen as the texture for that
particular polygon.

11.2 Space Carving

Space carving is another way of reconstructing the 3D model. Assuming a sufficient number
of photographs from different views of an object are available and their projection matrices are
known, a 3D structure can be carved out of a volume. Space carving starts with a volume V
composed of cubic voxels v containing the entire target object. For instance, a cube-like volume
consisting of voxels (in the order of 106 to 109). For each voxel at the surface v ∈ Surf(V)
one can calculate where it appears on the image plane Πi of each camera Ci that can observe v

7



using its projection matrix Pi.
The next step is to check if the projection is consistent in the image of every camera that can
observe the voxel. If so, the color of each image at the position (i.e. a small region) where voxel
v could be seen is more or less the same2. The voxels that are not consistent are being removed.
This iterative process starts at the surface of V and works its way down to the surface of the
object literally carving out the model. The remaining voxels form a volume V∗ which is a model
of the target object.
As the volumetric model has a large complexity in terms of voxel amount, it is inappropriate for
real time rendering applications. A possible solution for reducing the model complexity would
be isosurface extraction using a marching cubes algorithm [8]. The image of the camera most
perpendicular to a polygon can be chosen as the texture for that particular polygon.

12 Implementation

For our implementation we used Matlab as the prototyping environment. We applied the SIFT
library of [2] to some images from the dataset [4]. To obtain correct correspondences, the out-
lier removal function was applied (see section 3.1). From these correct point correspondences,
we were able to construct a fundamental matrix F by applying the eightpoint algorithm which
makes use of the function linsolve.
To ensure the correctness of F, we manually selected 8 point correspondences Later on a more
suitable solution was found by performing the SVD. We also applied SVD on all point corre-
spondences found by SIFT.
With both methods we got stuck with an F which contained very small values.

F =





0.000000001716732 −0.000000125985657 0.000031618609317
0.000000176118952 −0.000000008553157 0.000392929989641

−0.000041312297443 −0.000405217748327 −0.002289378115507



 (12)

If we ignored this (intuitively bad) result and calculated the projection matrices they also contain
very small values.
Projection matrices contain rotation translation and shearing which are hard to interpret if you
look only at the values. To get a clear idea of how a certain projection matrix behaves we created
an artificial cube with colored edges. Due to perspective transformation and knowledge of the
model (its a cube) the projection to the real world frame gives us insight how the projections
behaved.
If we applied this evaluation on our projections matrices, it resulted in a unwanted largely
stretched cube. Because of this result, we searched for something to compare our code with. We
used a library from the writers of the book [1] which was downloadable from [3]. This library
contained several functions like the conversion from F to P and vice versa. It also contained
example stereo images with their corresponding F matrices. We compared all parts of our code,
including the results and got equal results.
The F matrices of the library where also very small. This was very surprising, we could conclude
that we calculated it correctly and the matrices should be small.
Still the projection matrices came up with incorrect results. The only explanation we could
think of is because we do not apply the perspective correction (see Section 10). Unfortunately
we could not implement this, as the theory was hard to understand and we where running out
of time.

13 Conclusion

Constructing a 3D model from photographs taken from various views using uncalibrated cameras
is a daunting task. The steps require a lot of knowledge about linear algebra and multiple view

2The Euclidean distance in RGB space is often used here

8



geometry. We underestimated the time it took to understand this theory.
At the point of implementation we got stuck on the problem of the small F values, this took
us a lot of time. We have an idea of the cause of this problem but do not know this for sure.
We think the problem occurs because we do not apply perspective correction. Unfortunately we
could not finish the prototype. However this report gives a good start to implement the system
and could be of good use for further research.

References

[1] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd ed. Cam-
bridge University Press, ISBN: 0521540518, 2004.

[2] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International Jour-
nal of Computer Vision, vol. 60, pp. 91–110, 2004.

[3] A. Vedaldi, “Sift for matlab,” a Matlab implementation of SIFT. [Online]. Available:
http://www.vlfeat.org/∼vedaldi/code/sift.html

[4] J. M. Geusebroek, G. J. Burghouts, and A. W. M. Smeulders, “The amsterdam library
of object images,” International Journal of Computer Vision, vol. 61, no. 1, pp. 103–112,
2005. [Online]. Available:
http://www.science.uva.nl/research/publications/2005/GeusebroekIJCV2005

[5] Q. Luong, “Matrice fondamentale et calibration visuelle sur l’environment,” 1992.

[6] Q.-T. Luong and T. Viéville, “Canonical representations for the geometries of multiple pro-
jective views.” Computer Vision and Image Understanding, vol. 64, no. 2, pp. 193–229, 1996.
[Online]. Available: http://dblp.uni-trier.de/db/journals/cviu/cviu64.html#LuongV96

[7] A. W. Fitzgibbon and A. Zisserman, “Automatic 3D model acquisition and generation of
new images from video sequences,” in Proceedings of European Signal Processing Conference
(EUSIPCO ’98), Rhodes, Greece, 1998, pp. 1261–1269. [Online]. Available:
http://www.robots.ox.ac.uk/∼vgg

[8] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3d surface construction
algorithm,” SIGGRAPH Comput. Graph., vol. 21, no. 4, pp. 163–169, 1987.

9


